更多
当前位置: 首页 > 粮食

如何兼顾性能+实时性处理缓冲数据?

发布时间:2023-05-30 09:33:40 来源:博客园


(资料图)

我们经常会遇到这样的数据处理应用场景:我们利用一个组件实时收集外部交付给它的数据,并由它转发给一个外部处理程序进行处理。考虑到性能,它会将数据存储在本地缓冲区,等累积到指定的数量后打包发送;考虑到实时性,数据不能在缓冲区存太长的时间,必须设置一个延时时间,一旦超过这个时间,缓冲的数据必须立即发出去。看似简单的需求,如果需要综合考虑性能、线程安全、内存分配,要实现起来还真有点麻烦,本文提供一种简单的实现方式。

一、实例演示二、待处理的批量数据:Batch 三、感知数据处理的时机:BatchChangeToken 四、接收、缓冲、打包和处理数据:Batcher

一、实例演示

我们先来看看最终达成的效果。在如下这段代码中,我们使用一个Batcher对象来接收应用分发给它的数据,该对象最终会在适当的时机处理它们。 调用Batcher构造函数的三个参数分别表示:

processor:批量处理数据的委托对象,它指向的Process方法会将当前时间和处理的数据量输出到控制台上;batchSize:单次处理的数据量,当缓冲的数据累积到这个阈值时会触发数据的自动处理。我们将这个阈值设置为10;interval:两次处理处理的最长间隔,我们设置为5秒
var batcher = new Batcher(    processor:Process,    batchSize:10,    interval: TimeSpan.FromSeconds(5));var random = new Random();while (true){    var count = random.Next(1, 4);    for (var i = 0; i < count; i++)    {        batcher.Add(Guid.NewGuid().ToString());    }    await Task.Delay(1000);}static void Process(Batch batch)=> Console.WriteLine($"[{DateTimeOffset.Now}]{batch.Count} items are delivered.");

如上面的代码片段所示,在一个循环中,我们每隔1秒钟随机添加1-3个数据项。从下图中可以看出,Process方法的调用具有两种触发条件,一是累积的数据量达到设置的阈值10,另一个则是当前时间与上一次处理时间间隔超过5秒。

二、待处理的批量数据:Batch

除了上面实例涉及的Batcher,该解决方案还涉及两个额外的类型,如下这个Batch类型表示最终发送的批量数据。为了避免缓冲数据带来的内存分配,我们使用了一个单独的ArrayPool对象来创建池化的数组,这个功能体现在静态方法CreatePooledArray方法上。由于构建Batch对象提供的数组来源于对象池,在处理完毕后必须回归对象池,所以我们让这个类型实现了IDisposable接口,并将这一操作实现在Dispose方法种。在调用ArrayPool对象的Return方法时,我们特意将数组清空。由于提供的数组来源于对象池,所以并不能保证每个数据元素都承载了有效的数据,实现的迭代器和返回数量的Count属性对此作了相应的处理。

public sealed class Batch : IEnumerable, IDisposable where T : class{    private bool _isDisposed;    private int? _count;    private readonly T[] _data;    private static readonly ArrayPool _pool = ArrayPool.Create();    public int Count    {        get        {            if (_isDisposed) throw new ObjectDisposedException(nameof(Batch));            if(_count.HasValue) return _count.Value;            var count = 0;            for (int index = 0; index < _data.Length; index++)            {                if (_data[index] is  null)                {                    break;                }                count++;            }            return (_count = count).Value;        }    }    public Batch(T[] data) => _data = data ?? throw new ArgumentNullException(nameof(data));    public void Dispose()    {        _pool.Return(_data, clearArray: true);        _isDisposed = true;    }    public IEnumerator GetEnumerator() => new Enumerator(this);    IEnumerator IEnumerable.GetEnumerator() => GetEnumerator();    public static T[] CreatePooledArray(int batchSize) => _pool.Rent(batchSize);    private void EnsureNotDisposed()    {        if (_isDisposed) throw new ObjectDisposedException(nameof(Batch));    }    private sealed class Enumerator : IEnumerator    {        private readonly Batch _batch;        private readonly T[] _data;        private int _index = -1;        public Enumerator(Batch batch)        {            _batch = batch;            _data = batch._data;        }        public T Current        {            get { _batch.EnsureNotDisposed(); return _data[_index]; }        }        object IEnumerator.Current => Current;        public void Dispose() { }        public bool MoveNext()        {            _batch.EnsureNotDisposed();            return ++_index < _data.Length && _data[_index] is not null;        }        public void Reset()        {            _batch.EnsureNotDisposed();            _index = -1;        }    }}
三、感知数据处理的时机:BatchChangeToken

Batcher具有两个触发数据处理的设置:缓冲的数据量和两次数据处理之间的最长间隔。当累积的数据量或者当前时间与上一次处理的间隔达到阈值,缓冲的数据将自动被处理。.NET Core经常利用一个IChangeToken作为通知的令牌,为此我们定义了如下这个实现了该接口的BatchChangeToken类型。如下面的代码片段所示,上述两个触发条件体现在两个CancellationToken对象上,我们利用它们创建了对应的CancellationChangeToken对象,最后利用这两个CancellationChangeToken创建了一个CompositeChangeToken对象。这个CompositeChangeToken对象最终被用来实现了IChangeToken接口的三个成员。

internal sealed class BatchChangeToken : IChangeToken{    private readonly IChangeToken _innerToken;    private readonly int _countThreshold;    private readonly CancellationTokenSource _expirationTokenSource;    private readonly CancellationTokenSource _countTokenSource;    private int _counter;    public BatchChangeToken(int countThreshold, TimeSpan timeThreshold)    {        _countThreshold = countThreshold;        _countTokenSource = new CancellationTokenSource();        _expirationTokenSource = new CancellationTokenSource(timeThreshold);        var countToken = new CancellationChangeToken(_countTokenSource.Token);        var expirationToken = new CancellationChangeToken(_expirationTokenSource.Token);        _innerToken = new CompositeChangeToken(new IChangeToken[] { countToken, expirationToken });    }    public bool HasChanged => _innerToken.HasChanged;    public bool ActiveChangeCallbacks => _innerToken.ActiveChangeCallbacks;    public IDisposable RegisterChangeCallback(Action callback, object? state) => _innerToken.RegisterChangeCallback(s =>    {        callback(s);        _countTokenSource.Dispose();        _expirationTokenSource.Dispose();    }, state);    public void Increase()    {        Interlocked.Increment(ref _counter);        if (_counter >= _countThreshold)        {            _countTokenSource.Cancel();        }    }}

上述两个CancellationToken来源于对应的CancellationTokenSource,对应的字段为_countTokenSource和_expirationTokenSource。_expirationTokenSource根据设置的数据处理时间间隔创建而成。为了确定缓冲的数据量,我们提供了一个计数器,并利用Increase方法进行计数。在超过设置的数据量时,该方法会调用_expirationTokenSource的Cancel方法。在实现的ActiveChangeCallbacks方法种,我们将针对这两个CancellationTokenSource的释放放在注册的回调中。

四、接收、缓冲、打包和处理数据:Batcher

最终用于打包的Batcher类型定义如下。在构造函数中,我们除了提供上述两个阈值外,还提供了一个Action>委托完成针对打包数据的处理。通过Add方法接收的数据存储在_data字段返回的数组上,它时通过Batch的静态方法CreatePooledArray提供的。我们使用字段_index表示添加数据在_data数组中存储的位置,并使用InterLocked.Increase方法解决并发问题。

public sealed class Batcher : IDisposable where T : class{    private readonly Action> _processor;    private T[] _data;    private BatchChangeToken _changeToken = default!;    private readonly int _batchSize;    private int _index = -1;    private readonly IDisposable _scheduler;    public Batcher(Action> processor, int batchSize, TimeSpan interval)    {        _processor = processor ?? throw new ArgumentNullException(nameof(processor));        _batchSize = batchSize;        _data = Batch.CreatePooledArray(batchSize);        _scheduler = ChangeToken.OnChange(() => _changeToken = new BatchChangeToken(_batchSize, interval), OnChange);        void OnChange()        {            var data = Interlocked.Exchange(ref _data, Batch.CreatePooledArray(batchSize));            if (data[0] is not null)            {                Interlocked.Exchange(ref _index, -1);                _ = Task.Run(() => _processor.Invoke(new Batch(data)));            }        }    }    public void Add(T item)    {        if (item is null) throw new ArgumentNullException(nameof(item));        var index = Interlocked.Increment(ref _index);        if (index >= _batchSize)        {            SpinWait.SpinUntil(() => _index < _batchSize - 1);            Add(item);        }        _data[index] = item;        _changeToken.Increase();    }    public void Dispose() => _scheduler.Dispose();}

在构造函数中,我们调用了ChangeToken的静态方法OnChange将数据处理操作绑定到创建的BatchChangeToken对象上,并确保每次发送“数据处理”后将重新创建的BatchChangeToken对象赋值到_changeToken字段上,因为Add放到需要调用它的Increase增加计数。当接收到数据处理通知后,我们会调用Batch的静态方法CreatePooledArray构建一个数组将字段 ­_data引用的数组替换下来,并将其封装成Batch对象进行处理(如果数据存在)。于此同时,表示添加数据存储索引的_index恢复成-1。Add方法在对_index做自增操作后,如果发现累积的数据量达到阈值,需要等待数据处理完毕。由于数据处理以异步的方式处理,这里的耗时时很低的,所以我们这里选择了自旋锁的方式等待它完成。

上一篇:名师支招“踢”好临门一脚-焦点快播

下一篇:最后一页